UNBENDING SHAPES OF THIN-WALLED FLAT TRANSLATIONAL SHELLS OF VARIABLE THICKNESS

T. M. Martynenko

UDC 539.3:531.2.001:621.81

Consideration is given to the problem on selection of the thickness of a flat translational shell in which the prescribed external load and temperature field lead only to a zero-moment stressed-strained state (i.e., generate only membrane forces and do not change the curvature of the median surface). Within the framework of the Kirchhoff-Love theory, this problem is reduced to solution of a nonlinear differential equation.

Shell structures (shells) are widely used as domes, ceilings, etc.; therefore, their analysis for strength represents a topical problem in the modern mechanics of a deformed body. In view of the mathematical complexity of this problem, one often simplifies it by making a number of assumptions (flatness of the shell, calculation and designing of the shell for a prescribed load according to the zero-moment theory with the edge effect imposed, and others).

We use the assumptions that the median surface is described by the following equations [1-4]:

$$
\begin{gather*}
z=f(x)+g(y), x \in[0 ; a], y \in[0 ; b] ; \\
\left|z_{x}^{\prime}\right| \ll 1, \quad\left|z_{y}^{\prime}\right| \ll 1, A=B=1, \frac{1}{R_{1}} \approx-f^{\prime \prime}(x), \frac{1}{R_{2}} \approx-g^{\prime \prime}(y), \frac{1}{R_{12}}=0 . \tag{1}
\end{gather*}
$$

The problem in question is in selecting the thickness of the shell $h(x, y)$ such that the prescribed external load q_{1}, q_{2}, and q_{n} and temperature field θ in it produce no change in its curvature and no torsion, i.e.,

$$
\begin{equation*}
\chi_{1}=\chi_{2}=\chi_{12}=0 \tag{2}
\end{equation*}
$$

Within the framework of the Kirchhoff-Love theory, the resolving equations of this problem take the following form [1]:
the equilibrium equations appear as

$$
\begin{equation*}
\frac{\partial T_{1}}{\partial x}+\frac{\partial S}{\partial y}+q_{1}=0, \quad \frac{\partial T_{2}}{\partial y}+\frac{\partial S}{\partial x}+q_{2}=0, \quad \frac{T_{1}}{R_{1}}+\frac{T_{2}}{R_{2}}=q_{n} \tag{3}
\end{equation*}
$$

Hooke's law with allowance for the temperature strain is

$$
\begin{equation*}
\varepsilon_{1}=\frac{1}{E h}\left(T_{1}-\mu T_{2}\right)+\alpha \theta, \quad \varepsilon_{2}=\frac{1}{E h}\left(T_{2}-\mu T_{1}\right)+\alpha \theta, \quad \gamma_{12}=\frac{2(1+\mu)}{E h} S ; \tag{4}
\end{equation*}
$$

the equations of consistency of strains appear as

$$
\begin{equation*}
\frac{\partial \varepsilon_{2}}{\partial x}=\frac{\partial \gamma_{12}}{\partial y}, \frac{\partial \varepsilon_{1}}{\partial y}=\frac{\partial \gamma_{12}}{\partial x}, \frac{\partial^{2} \gamma_{12}}{\partial x \partial y}=0 \tag{5}
\end{equation*}
$$

From Eq. (5) we have

Command-Engineering Institute of the Ministry of Emergencies of the Republic of Belarus, Minsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 3, pp. 150-152, May-June, 2005. Original article submitted September 16, 2004.

$$
\begin{equation*}
\gamma_{12}=u(x)+v(y) . \tag{6}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
u(x)+v(y)=\frac{2(1+\mu)}{E h(x, y)} S(x, y) \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
S(x, y)=\frac{E h(x, y)}{2(1+\mu)}(u(x)+v(y)) . \tag{8}
\end{equation*}
$$

The functions $u(x)$ and $v(y)$ involved in (7) and (8) are determined from the following conditions:

$$
\begin{gather*}
u(x)+v(0)=\frac{2(1+\mu)}{E h(x, 0)} S(x, 0), u(0)+v(y)=\frac{2(1+\mu)}{\operatorname{Eh}(y, 0)} S(0, y), \\
u(0)+v(0)=\frac{2(1+\mu)}{E h(0,0)} S(0,0) . \tag{9}
\end{gather*}
$$

Adding these equalities termwise, we obtain

$$
\begin{equation*}
\frac{S(x, y)}{h(x, y)}=\frac{S(x, 0)}{h(x, 0)}+\frac{S(0, y)}{h(0, y)}-\frac{S(0,0)}{h(0,0)} \tag{10}
\end{equation*}
$$

The boundary values of $S(x, y)$ and $h(x, y)$ are involved in the right-hand side of (10); therefore, $\frac{S(x, y)}{h(x, y)}$ may be considered to be known. Then (1) yields

$$
\begin{equation*}
\frac{\partial T_{1}}{\partial x}=-\left(\frac{\partial S}{\partial y}+q_{1}\right), \frac{\partial T_{2}}{\partial y}=-\left(\frac{\partial S}{\partial x}+q_{2}\right) \tag{11}
\end{equation*}
$$

From Eqs. (4) and (5) we obtain

$$
\frac{\partial}{\partial y}\left(\frac{T_{1}-\mu T_{2}}{h(x, y)}+E \alpha \theta\right)=\frac{\partial}{\partial x}\left(\frac{2(1+\mu)}{h(x, y)} S(x, y)\right), \quad \frac{\partial}{\partial x}\left(\frac{T_{2}-\mu T_{1}}{h(x, y)}+E \alpha \theta\right)=\frac{\partial}{\partial y}\left(\frac{2(1+\mu)}{h(x, y)} S(x, y)\right),
$$

whence we have

$$
\begin{align*}
& \frac{\partial T_{1}}{\partial y}=-\mu\left(\frac{\partial S}{\partial x}+q_{2}\right)-\frac{\partial}{\partial y} \ln h\left(T_{1}-\mu T_{2}\right)-h \frac{\partial}{\partial y}(E \alpha \theta)+h \frac{\partial}{\partial x}\left(\frac{2(1+\mu)}{h} S(x, y)\right), \\
& \frac{\partial T_{2}}{\partial x}=-\mu\left(\frac{\partial S}{\partial y}+q_{1}\right)-\frac{\partial}{\partial x} \ln h\left(T_{2}-\mu T_{1}\right)-h \frac{\partial}{\partial x}(E \alpha \theta)+h \frac{\partial}{\partial y}\left(\frac{2(1+\mu)}{h} S(x, y)\right) . \tag{12}
\end{align*}
$$

Formulas (11)-(12) represent a system of linear differential equations with partial derivatives of first order for $\frac{\partial T_{1}}{\partial x}$, $\frac{\partial T_{1}}{\partial y}, \frac{\partial T_{2}}{\partial x}$, and $\frac{\partial T_{2}}{\partial y}$ whose solvability conditions have the form [5-7]

$$
\begin{align*}
& \frac{\partial}{\partial y}\left(\frac{\partial S}{\partial y}+q_{1}\right)=\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial S}{\partial x}+q_{2}\right)+\left(\frac{\partial}{\partial y} \ln h\right)\left(T_{1}-\mu T_{2}\right)+h \frac{\partial}{\partial y}(E \alpha \theta)-h \frac{\partial}{\partial x}\left(\frac{2(1+\mu)}{h} S(x, y)\right)\right), \\
& \frac{\partial}{\partial x}\left(\frac{\partial S}{\partial x}+q_{2}\right)=\frac{\partial}{\partial y}\left(\mu\left(\frac{\partial S}{\partial y}+q_{1}\right)+\left(\frac{\partial}{\partial x} \ln h\right)\left(T_{2}-\mu T_{1}\right)+h \frac{\partial}{\partial x}(E \alpha \theta)-h \frac{\partial}{\partial y}\left(\frac{2(1+\mu)}{h} S(x, y)\right) .\right. \tag{13}
\end{align*}
$$

Hence we find

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial y \partial x} \ln h\right)\left(T_{1}-\mu T_{2}\right)+\frac{\partial}{\partial y} \ln h\left(\frac{\partial T_{1}}{\partial x}-\mu \frac{\partial T_{2}}{\partial x}\right)=\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial S}{\partial x}+q_{2}\right)-\frac{\partial}{\partial y}\left(\frac{\partial S}{\partial y}+q_{1}\right)+h \frac{\partial}{\partial y}(E \alpha \theta)-\right. \\
\left.-h \frac{\partial}{\partial x}\left(\frac{2(1+\mu)}{h} S(x, y)\right)\right), \\
\left(\frac{\partial^{2}}{\partial x \partial y} \ln h\right)\left(T_{2}-\mu T_{1}\right)+\frac{\partial}{\partial x} \ln h\left(\frac{\partial T_{2}}{\partial y}-\mu \frac{\partial T_{1}}{\partial y}\right)=\frac{\partial}{\partial y}\left(\mu\left(\frac{\partial S}{\partial y}+q_{1}\right)-\frac{\partial}{\partial x}\left(\frac{\partial S}{\partial x}+q_{2}\right)+h \frac{\partial}{\partial x}(E \alpha \theta)-\right. \tag{14}\\
\left.-h \frac{\partial}{\partial y}\left(\frac{2(1+\mu)}{h} S(x, y)\right)\right) .
\end{gather*}
$$

Relations (14) with account for (11)-(12) represent a system of two linear algebraic equations for T_{1} and T_{2} whose solution yields

$$
\begin{align*}
& T_{1}=\frac{1}{(1+\mu) \Delta} C\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)+\mu D\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right), \tag{15}\\
& T_{2}=\frac{1}{(1+\mu) \Delta} \mu C\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)+D\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right),
\end{align*}
$$

where

$$
\begin{gathered}
\Delta=\left(\frac{\partial^{2} \ln h}{\partial x \partial y}\right)^{2}-\mu^{2}\left(\frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)^{2} ; \\
C=\frac{\partial \ln h}{\partial y}\left(\left(1-\mu^{2}\right)\left(\frac{\partial S}{\partial y}+q_{1}\right)+\mu h \frac{\partial}{\partial y} \frac{2(1+\mu) S}{h}-\mu h \frac{\partial}{\partial x}(E \alpha \theta)\right)-\frac{\partial}{\partial y}\left(\frac{\partial S}{\partial y}+q_{1}\right)+ \\
+\frac{\partial}{\partial x}\left(\mu\left(\frac{\partial S}{\partial x}+q_{2}\right)+h \frac{\partial}{\partial y}(E \alpha \theta)-h \frac{\partial}{\partial x}\left(\frac{2(1+\mu) S}{h}\right)\right) ; \\
D=\frac{\partial \ln h}{\partial x}\left(\left(1-\mu^{2}\right)\left(\frac{\partial S}{\partial x}+q_{2}\right)+\mu h \frac{\partial}{\partial x} \frac{2(1+\mu) S}{h}-\mu h \frac{\partial}{\partial y}(E \alpha \theta)\right)-\frac{\partial}{\partial x}\left(\frac{\partial S}{\partial x}+q_{2}\right)+ \\
+\frac{\partial}{\partial y}\left(\mu\left(\frac{\partial S}{\partial y}+q_{1}\right)+h \frac{\partial}{\partial x}(E \alpha \theta)-h \frac{\partial}{\partial y}\left(\frac{2(1+\mu) S}{h}\right)\right) .
\end{gathered}
$$

Formulas (15) have been derived under the assumption that $\Delta \neq 0$.
Substituting expressions (15) obtained for T_{1} and T_{2} into the third equilibrium equation (3), we find the equation sought for determination of the geometric shape of the shell:

$$
\begin{align*}
& \frac{1}{R_{1}} \frac{1}{(1+\mu) \Delta}\left(C\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)+\mu D\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)\right)+ \\
+ & \frac{1}{R_{2}} \frac{1}{(1+\mu) \Delta}\left(\mu C\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)+D\left(\frac{\partial^{2} \ln h}{\partial x \partial y}+\mu^{2} \frac{\partial \ln h}{\partial x} \frac{\partial \ln h}{\partial y}\right)\right)=q_{n} . \tag{16}
\end{align*}
$$

Expression (16) is basic in solution of inverse problems of the theory of thin-walled thermoelastic shells. In solving them, part of the geometric parameters are prescribed, whereas formula (16) is used for determination of the remaining parameters.

NOTATION

A and B, coefficients of the first quadratic form of the median surface; E, Young modulus; $h(x, y)$, shell thickness; q_{1}, q_{2}, and q_{3}, external load; $1 / R_{1}, 1 / R_{2}$, and $1 / R_{12}$, curvatures and torsion of the median surface; T_{1}, T_{2}, and $S(x, y)$, generalized stretching and tangential forces acting in normal cross sections of the shell; α coefficient of thermoelasticity; μ, Poisson coefficient; θ, temperature field.

REFERENCES

1. V. L. Biderman, Mechanics of Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1977).
2. M. P. Ogibalov and M. A. Koltunov, Shells and Plates [in Russian], Izd. MGU, Moscow (1969).
3. A. L. Gol'denveizer, The Theory of Elastic Thin Shells [in Russian], GITTL, Moscow (1953).
4. A. L. Gol'denveizer, The Theory of Elastic Thin Shells [in Russian], 2nd edn., Nauka, Moscow (1976).
5. Ya. V. Lopatinskii, Ordinary Differential Equations [in Russian], Vishcha Shkola, Kiev-Donetsk (1976).
6. R. Courant, Vorlesungen über Differential- und Integralrechnung [Russian translation], Mir, Moscow (1961).
7. L. P. Eisenhart, Continuous Groups of Transformations [Russian translation], IL, Moscow (1947).
