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Consideration is given to the problem on selection of the thickness of a flat translational shell in which the
prescribed external load and temperature field lead only to a zero-moment stressed-strained state (i.e., gener-
ate only membrane forces and do not change the curvature of the median surface). Within the framework of
the Kirchhoff–Love theory, this problem is reduced to solution of a nonlinear differential equation.

Shell structures (shells) are widely used as domes, ceilings, etc.; therefore, their analysis for strength repre-
sents a topical problem in the modern mechanics of a deformed body. In view of the mathematical complexity of this
problem, one often simplifies it by making a number of assumptions (flatness of the shell, calculation and designing
of the shell for a prescribed load according to the zero-moment theory with the edge effect imposed, and others).

We use the assumptions that the median surface is described by the following equations [1–4]:

z = f (x) + g (y) ,   x 2 [0; a] ,   y 2 [0; b] ;

 zx
′   << 1 ,    zy

′   << 1 ,   A = B = 1 ,   
1

R1
 C − f ′′  (x) ,   1

R2
 C − g′′  (y) ,   1

R12
 = 0 .

(1)

The problem in question is in selecting the thickness of the shell h(x, y) such that the prescribed external load
q1, q2, and qn and temperature field θ in it produce no change in its curvature and no torsion, i.e.,

χ1 = χ2 = χ12 = 0 . (2)

Within the framework of the Kirchhoff–Love theory, the resolving equations of this problem take the following form
[1]:

the equilibrium equations appear as

∂T1

∂x
 + 

∂S

∂y
 + q1 = 0 ,   

∂T2

∂y
 + 

∂S

∂x
 + q2 = 0 ,   

T1

R1
 + 

T2

R2
 = qn ; (3)

Hooke’s law with allowance for the temperature strain is

ε1 = 
1

Eh
 (T1 − µT2) +αθ ,   ε2 = 

1
Eh

 (T2 − µT1) + αθ ,   γ12 = 
2 (1 + µ)

Eh
 S ; (4)

the equations of consistency of strains appear as

∂ε2

∂x
 = 

∂γ12

∂y
 ,   

∂ε1

∂y
 = 

∂γ12

∂x
 ,   

∂2γ12

∂x∂y
 = 0 . (5)

From Eq. (5) we have
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γ12 = u (x) + v (y) . (6)

Then we obtain

u (x) + v (y) = 
2 (1 + µ)
Eh (x, y)

 S (x, y) (7)

or

S (x, y) = 
Eh (x, y)
2 (1 + µ)

 (u (x) + v (y)) . (8)

The functions u(x) and v(y) involved in (7) and (8) are determined from the following conditions:

u (x) + v (0) = 
2 (1 + µ)
Eh (x, 0)

 S (x, 0) ,   u (0) + v (y) = 
2 (1 + µ)
Eh (y, 0)

 S (0, y) ,

u (0) + v (0) = 
2 (1 + µ)
Eh (0, 0)

 S (0, 0) .

(9)

Adding these equalities termwise, we obtain

S (x, y)
h (x, y)

 = 
S (x, 0)
h (x, 0)

 + 
S (0, y)
h (0, y)

 − 
S (0, 0)
h (0, 0)

 . (10)

The boundary values of S(x, y) and h(x, y) are involved in the right-hand side of (10); therefore, 
S(x, y)
h(x, y)

 may be con-

sidered to be known. Then (1) yields

∂T1

∂x
 = − 





∂S

∂y
 + q1




 ,   

∂T2

∂y
 = − 





∂S

∂x
 + q2




 . (11)

From Eqs. (4) and (5) we obtain

∂
∂y

 




T1 − µT2

h (x, y)
 + Eαθ




 = 

∂
∂x

 




2 (1 + µ)
h (x, y)

 S (x, y)



 ,   

∂
∂x

 




T2 − µT1

h (x, y)
 + Eαθ




 = 

∂
∂y

 




2 (1 + µ)
h (x, y)

 S (x, y)



 ,

whence we have

∂T1

∂y
 = − µ 





∂S

∂x
 + q2




 − 

∂
∂y

 ln h (T1 − µT2) − h 
∂
∂y

 (Eαθ) + h 
∂
∂x

 




2 (1 + µ)
h

 S (x, y)



 ,

∂T2

∂x
 = − µ 





∂S

∂y
 + q1




 − 

∂
∂x

 ln h (T2 − µT1) − h 
∂
∂x

 (Eαθ) + h 
∂
∂y

 




2 (1 + µ)
h

 S (x, y)



 .

(12)

Formulas (11)–(12) represent a system of linear differential equations with partial derivatives of first order for 
∂T1

∂x
,

∂T1

∂y
, 

∂T2

∂x
, and 

∂T2

∂y
 whose solvability conditions have the form [5–7]
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∂
∂y

 




∂S

∂y
 + q1




 = 

∂
∂x

 



µ 





∂S
∂x

 + q2



 + 





∂
∂y

 ln h



 (T1 − µT2) + h 

∂
∂y

 (Eαθ) − h 
∂
∂x

 




2 (1 + µ)
h

 S (x, y)







 ,

∂
∂x

 




∂S

∂x
 + q2




 = 

∂
∂y

 



µ 





∂S
∂y

 + q1



 + 





∂
∂x

 ln h



 (T2 − µT1) + h 

∂
∂x

 (Eαθ) − h 
∂
∂y

 




2 (1 + µ)
h

 S (x, y)







 .

(13)

Hence we find





∂2

∂y∂x
 ln h




 (T1 − µT2) + 

∂
∂y

 ln h 




∂T1

∂x
 − µ 

∂T2

∂x




 = 

∂
∂x

 



µ 





∂S

∂x
 + q2




 − 

∂
∂y

 




∂S

∂y
 + q1




 + h 

∂
∂y

 (Eαθ) −

− h 
∂
∂x

 




2 (1 + µ)
h

 S (x, y)







 ,





∂2

∂x∂y
 ln h




 (T2 − µT1) + 

∂
∂x

 ln h 




∂T2

∂y
 − µ 

∂T1

∂y




 = 

∂
∂y

 



µ 





∂S

∂y
 + q1




 − 

∂
∂x

 




∂S

∂x
 + q2




 + h 

∂
∂x

 (Eαθ) −

− h 
∂
∂y

 




2 (1 + µ)
h

 S (x, y)







 .

(14)

Relations (14) with account for (11)–(12) represent a system of two linear algebraic equations for T1 and T2 whose
solution yields

T1 = 
1

(1 + µ) ∆
 C 




∂2

 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y




 + µD 




∂2

 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y




 ,

T2 = 
1

(1 + µ) ∆
 µC 





∂2
 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y




 + D 




∂2

 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y




 ,

(15)

where

∆ = 



∂2

 ln h

∂x∂y





2

 − µ2
 




∂ ln h

∂x
 
∂ ln h

∂y




2

 ;

C = 
∂ ln h

∂y
 



(1 − µ2) 





∂S

∂y
 + q1




 + µh 

∂
∂y

 
2 (1 + µ) S

h
 − µh 

∂
∂x

 (Eαθ)



 − 

∂
∂y

 




∂S
∂y

 + q1



 + 

+ 
∂
∂x

 



µ 





∂S
∂x

 + q2



 + h 

∂
∂y

 (Eαθ) −h 
∂
∂x

 




2 (1 + µ) S
h








 ;

D = 
∂ ln h

∂x
 



(1 − µ2) 





∂S

∂x
 + q2




 + µh 

∂
∂x

 
2 (1 + µ) S

h
 − µh 

∂
∂y

 (Eαθ)



 − 

∂
∂x

 




∂S
∂x

 + q2



 + 

+ 
∂
∂y

 



µ 





∂S
∂y

 + q1



 + h 

∂
∂x

 (Eαθ) − h 
∂
∂y

 




2 (1 + µ) S
h








 .

Formulas (15) have been derived under the assumption that ∆ ≠ 0.
Substituting expressions (15) obtained for T1 and T2 into the third equilibrium equation (3), we find the equa-

tion sought for determination of the geometric shape of the shell:
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1
R1

 
1

(1 + µ) ∆
 



C 





∂2
 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y




 + µD 




∂2

 ln h
∂x∂y

 + µ2
 
∂ ln h

∂x
 
∂ ln h

∂y








 +

+ 
1

R2
 

1
(1 + µ) ∆

 



µC 





∂2
 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y




 + D 





∂2
 ln h

∂x∂y
 + µ2

 
∂ ln h

∂x
 
∂ ln h

∂y








 = qn . (16)

Expression (16) is basic in solution of inverse problems of the theory of thin-walled thermoelastic shells. In
solving them, part of the geometric parameters are prescribed, whereas formula (16) is used for determination of the
remaining parameters.

NOTATION

A and B, coefficients of the first quadratic form of the median surface; E, Young modulus; h(x, y), shell
thickness; q1, q2, and q3, external load; 1/R1, 1/R2, and 1/R12, curvatures and torsion of the median surface; T1, T2,
and S(x, y), generalized stretching and tangential forces acting in normal cross sections of the shell; α coefficient of
thermoelasticity; µ, Poisson coefficient; θ, temperature field.
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